

OVERVIEW

The RecircSetter[™] by Jomar Valve is an adjustable thermostatic balancing valve for domestic hot water recirculation system applications. This balancing valve utilizes a thermostatic cartridge, which eliminates the need for pressure ports to balance the system and allows the valve to balance based on temperature as opposed to pressure or flow.

The RecircSetter^M is certified to NSF 61 and NSF 672 for potable hot water systems and has an adjustable hand wheel with a temperature range from 95°F to 140°F. It can be equipped with a thermal cartridge for thermal disinfection treatment at a fixed temperature of 160°F, or with an actuated bypass to fully control the thermal disinfection process with a Building Management System (BMS). The RecircSetter^M is available with female NPT connections, a drywell thermometer, and is equipped with a temperature sensor port for remote monitoring ($\frac{1}{2}$ " NPT plugged).

FEATURES

FIELD ADJUSTABLE

For all models, the desired recirculation temperature is chosen by the system designer and is field adjustable (95°F to 140°F) should the system demand change.

SUPERIOR ASSEMBLIES Featuring fewer connections, shorter assembly length, and an integrated check valve option, the RecircSetter[™] allows for cost savings, less space requirements, and seamless installation.

TEMPERATURE SENSOR PORT The RecircSetter[™] is equipped with a 1/2" NPT temperature sensor port that allows for remote monitoring through a BMS.

STANDARD DRYWELL THERMOMETER Each model comes standard with a drywell thermometer to easily identify the water temperature flowing through each valve. Drywells are located on each side of the RecircSetter[™] for orientation flexibility.

FIELD SERVICEABILITY Double union connection options in our dual isolation (MG) models allow for ease of field serviceability.

THERMAL DISINFECTION CAPABILITIES TG-130/150 models are engineered for disinfection capabilities at a fixed temperature of 160°F or at a chosen temperature actuated through a BMS.

HE RECIRCSETTER™ IS THE DYNAMIC SOLUTION NECESSARY FOR A DYNAMIC SYSTEM

RECIRCSETTERTM LINEUP

TB-120G

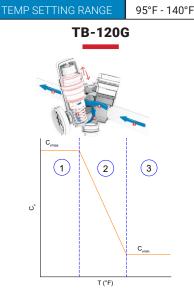
SIZE FXF	PART NO	CHECK VALVE
1/2"	180-103-B	Ν
3/4"	180-104-B	N
1/2"	180-104-B-C	Y
3/4"	180-104-B-C	Y

SIZE FXF	PART NO	CHECK VALVE
1/2"	180-103-D	Ν
3/4"	180-104-D	N
1/2"	180-104-D-C	Y
3/4"	180-104-D-C	Y

TB-150G

SIZE FXF	PART NO	CHECK VALVE
1/2"	180-103-X	N
3/4"	180-104-X	N
1/2"	180-104-X-C	Y
3/4"	180-104-X-C	Y

TB-150G + ACTUATOR



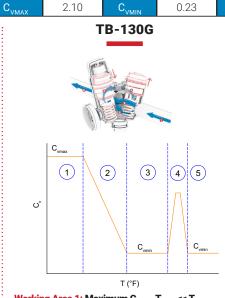
SIZE FXF	PART NO	CHECK VALVE
1/2"	180-103-A	N
3/4"	180-104-A	N
1/2"	180-104-A-C	Y
3/4"	180-104-A-C	Y

DUAL **ISOLATION**

MODEL	SIZE FXF	PART NO
TB-120MG	1/2"	180-103MG-B-I
TB-120MG	3/4"	180-104MG-B-I
TB-130MG	1/2"	180-103MG-D-I
TB-130MG	3/4"	180-104MG-D-I
TB-150MG	1/2"	180-103MG-X-I
TB-150MG	3/4″	180-104MG-X-I
TB-150MG	1/2″	180-103MG-A-I
TB-150MG	3/4″	180-104MG-A-I

OPERATING PRINCIPLE

Working Area 1: Maximum C_{vmax}, T_{water} << T_{desiredrecirc} In this temperature range, the valve is completely open and a spring is balancing the thermostatic


catridge

Working Area 2: Variable C_v , when T_{water} is reaching T_{desir}

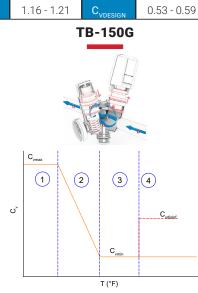
When the water temperature is approaching the selected balancing temperature, the thermostatic cartridge is expanding until it reaches the "closed" position where the minimum flow is met, \boldsymbol{C}_{vmin}

Working Area 3: C_{vmin} , $T_{water} \ge T_{desiredrecirc}$ When the water temperature is higher than the

selected temperature, the thermostatic cartridge is keeping the valve in "closed" position and the minimum flow occurs, C_{vmin}

Working Area 1: Maximum C_{vmax}, T_{water} << T_{desiredrecirc} In this temperature range, the valve is completely open and a spring is balancing the thermostatic cartridge

Working Area 2: Variable C_v , when T_{water} is reaching $T_{desired recirc}$


When the water temperature is approaching the selected balancing temperature, the thermostatic cartridge is expanding until it reaches the "closed" position where the minimum flow is met, C_{vmin}

Working Area 3: C_{vmin} , $T_{water} \ge T_{desiredrecirc}$ When the water temperature is higher than the selected temperature, the thermostatic cartridge is keeping the valve in "closed" position and the minimum flow occurs, C_{vmin}

Working Area 4: C_{disinf}, T_{water} ≥ T_{disinf} The thermal disinfection cartridge allows increased water flow through the valve when the temperature reaches the disinfection value (factory selected at 160°F and not modifiable by end user)

Working Area 5: C_{vmin}, T_{water} ≥ T_{disinf}

When the water temperature is higher than the disinfection point, the flow is reduced to C_{vmin}

Working Area 1: Maximum C_{vmax}, T_{water} << T_{desiredrecirc} In this temperature range, the valve is completely

open and a spring is balancing the thermostatic cartridge

Working Area 2: Variable C_v , when T_{water} is reaching T_{desire}

When the water temperature is approaching the selected balancing temperature, the thermostatic cartridge is expanding until it reaches the "closed" position where the minimum flow is met, $\mathrm{C}_{\mathrm{vmin}}$

Working Area 3: C_{vmin} , $T_{water} \ge T_{desired recirc}$ When the water temperature is higher than the selected temperature, the thermostatic cartridge is keeping the valve in "closed" position and the minimum flow occurs, C_{vmin}

Working Area 4: C_{disinf}

To work in this area, these conditions must be met simultaneously: (1) water temperature over 158°F; (2) the actuator must be open

Such conditions are typically controlled by an external control or BMS (not included).