Smitherooper

I N T E R N A T I O N A L

Material Specifications

Housing:

Ductile Iron Housings conform to ASTM A-536, Grade 65-45-12

Coating:

\square Orange Paint (rust inhibiting) - Standard Coating - Fig. 65RC

- Hot Dipped Galvanized conforming to ASTM A-153 - Fig. 66RC

Coupling Gasket Style:

ㅁ "C" Style - E-EPDM, T-Nitrile

Nuts and Bolts:

Zinc electroplated, heat treated, oval neck track head bolts conforming to ASTM-183 Grade 2 with a minimum tensile strength of 110,000 psi; Heavy hex nuts made of carbon steel conforming to ASTM A-563 Grade A or Grade B, or J995 Grade 2.

SCI track bolts are 100\% magnetic particle inspected.
The SCI logo appears on all COOPLOK" track bolts.

Coupling Gasket Material:

$\square \quad$ Pre-lubricated Grade E-EPDM (Green Stripe) $-30^{\circ} \mathrm{F}\left(-34^{\circ} \mathrm{C}\right)$ to $+230^{\circ} \mathrm{F}\left(+110^{\circ} \mathrm{C}\right)$ Service Temperature Range For use with water service, diluted acids, alkali solutions, oil-free air and other chemical services. NOT FOR PETROLEUM, STEAM, OR NATURAL GAS APPLICATIONS.
$\square \quad$ Grade T-Nitrile (Orange Stripe)
$-20^{\circ} \mathrm{F}\left(-29^{\circ} \mathrm{C}\right)$ to $+180^{\circ} \mathrm{F}\left(+82^{\circ} \mathrm{C}\right)$ Service Temperature Range For use with petroleum applications, vegetable \& mineral oils, and air with oil vapors.
NOT FOR USE IN HOT WATER, STEAM, OR NATURAL GAS APPLICATIONS.

Project Information	
Project/Job/System:	
Submittal Date:	Contractor:
Engineer:	Address:
Address:	CitylState:
CitylState:	
Notes:	

Pipe Size in / mm	Part Number		Max Pipe End Gap in / mm	Dimensions			Deflection Degrees	Case Qty	Weight lb/kg
	Painted	Galvanized		$\begin{gathered} \text { A } \\ \text { in } / m m \end{gathered}$	$\begin{gathered} \text { B } \\ \text { in } / \mathrm{mm} \end{gathered}$	$\begin{gathered} \text { C } \\ \text { in } / m m \end{gathered}$			
$\begin{gathered} 2 \times 1-1 / 2 \\ 50 \times 40 \end{gathered}$	65RC3020014	66RC3020014	$\begin{aligned} & 1 / 8 \\ & 3.2 \end{aligned}$	$\begin{aligned} & \hline 3.43 \\ & 87.1 \end{aligned}$	$\begin{aligned} & 4.88 \\ & 124.0 \end{aligned}$	$\begin{aligned} & 1.85 \\ & 47.0 \end{aligned}$	2.0°	26	$\begin{aligned} & 1.9 \\ & 0.9 \end{aligned}$
$\begin{gathered} 2-1 / 2 \times 2 \\ 65 \times 50 \end{gathered}$	65RC3024020	66RC3024020	$\begin{aligned} & 1 / 8 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 3.98 \\ & 101.1 \end{aligned}$	$\begin{aligned} & 5.35 \\ & 135.9 \end{aligned}$	$\begin{aligned} & 1.85 \\ & 47.0 \end{aligned}$	1.5°	22	$\begin{aligned} & 2.3 \\ & 1.0 \end{aligned}$
$\begin{gathered} 3 \times 2 \\ 80 \times 50 \end{gathered}$	65RC3030020	66RC3030020	$\begin{aligned} & 1 / 8 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 4.51 \\ & 114.5 \end{aligned}$	$\begin{aligned} & 6.34 \\ & 161.0 \end{aligned}$	$\begin{aligned} & 1.85 \\ & 47.0 \end{aligned}$	$1.8{ }^{\circ}$	20	$\begin{gathered} \hline 3.1 \\ 1.4 \end{gathered}$
$\begin{gathered} 3 \times 2-1 / 2 \\ 80 \times 65 \end{gathered}$	65RC3030024	66RC3030024	$\begin{aligned} & 1 / 8 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 4.51 \\ & 114.5 \end{aligned}$	$\begin{aligned} & \hline 6.34 \\ & 161.0 \end{aligned}$	$\begin{aligned} & 1.85 \\ & 47.0 \end{aligned}$	1.8°	20	$\begin{gathered} 3.0 \\ 1.3 \end{gathered}$
$\begin{gathered} 4 \times 2 \\ 100 \times 50 \end{gathered}$	65RC3040020	66RC3040020	$\begin{aligned} & 1 / 4 \\ & 6.4 \end{aligned}$	$\begin{aligned} & 5.83 \\ & 148.1 \end{aligned}$	$\begin{aligned} & 7.52 \\ & 191.0 \end{aligned}$	$\begin{gathered} 2.01 \\ 51.1 \end{gathered}$	1.2°	10	$\begin{aligned} & 4.8 \\ & 2.2 \end{aligned}$
$\begin{gathered} 4 \times 2-1 / 2 \\ 100 \times 65 \end{gathered}$	65RC3040024	66RC3040024	$\begin{aligned} & 1 / 4 \\ & 6.4 \end{aligned}$	$\begin{aligned} & 5.83 \\ & 148.1 \end{aligned}$	$\begin{aligned} & 7.52 \\ & 191.0 \end{aligned}$	$\begin{gathered} 2.01 \\ 51.1 \end{gathered}$	1.2°	10	$\begin{aligned} & 4.8 \\ & 2.2 \end{aligned}$
$\begin{gathered} 4 \times 3 \\ 100 \times 80 \end{gathered}$	65RC3040030	66RC3040030	$\begin{aligned} & 1 / 4 \\ & 6.4 \end{aligned}$	$\begin{aligned} & 5.83 \\ & 148.1 \end{aligned}$	$\begin{aligned} & 7.52 \\ & 191.0 \end{aligned}$	$\begin{gathered} 2.01 \\ 51.1 \end{gathered}$	1.2°	10	$\begin{array}{r} 4.4 \\ 2.0 \end{array}$
$\begin{gathered} 6 \times 4 \\ 150 \times 100 \end{gathered}$	65RC3060040	66RC3060040	$\begin{aligned} & 1 / 4 \\ & 6.4 \end{aligned}$	$\begin{aligned} & \hline 7.99 \\ & 202.9 \end{aligned}$	$\begin{aligned} & 10.35 \\ & 262.9 \end{aligned}$	$\begin{array}{r} 2.01 \\ 51.1 \end{array}$	0.9°	-	$\begin{aligned} & 9.0 \\ & 4.1 \end{aligned}$
$\begin{gathered} 8 \times 6 \\ 200 \times 150 \end{gathered}$	65RC3080060	66RC3080060	$\begin{aligned} & 1 / 4 \\ & 6.4 \end{aligned}$	$\begin{aligned} & 10.12 \\ & 257.0 \end{aligned}$	$\begin{array}{r} 13.15 \\ 334.0 \end{array}$	$\begin{gathered} 2.48 \\ 63.0 \end{gathered}$	0.8°	-	$\begin{gathered} 14.6 \\ 6.6 \end{gathered}$

